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We explore a scheme for guiding cold atoms through a hollow Bessel beam generated by a single axicon and a lens
from a two-dimensional magneto-optical trap toward a science chamber. We compare the Bessel beam profiles
measured along the optical axis to a numerical propagation of the beam’s wavefront, and we show how it is affected
by diffraction during the passage through a long narrow funnel serving as a differential pumping tube between the
chambers. We derive an approximate analytic expression for the intensity distribution of the Bessel beam and the
dipolar optical force acting on the atoms. By a Monte-Carlo simulation based on a stochastic Runge–Kutta algo-
rithm of the motion of atoms initially prepared at a given temperature, we show that a considerable enhancement of
the transfer efficiency can be expected in the presence of a sufficiently intense Bessel beam. © 2020 Optical Society of

America
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1. INTRODUCTION

Experiments with ultra-cold atoms are conditioned to the avail-
ability of an extreme ultra-high vacuum (XUHV) environment.
This entailed the development of a variety of techniques allow-
ing for a physical separation of a science chamber, maintained
at pressures as low as 10−11 mbar or below, and a preparation
chamber. In the preparation chamber, the atomic gas is provided
by heating a solid chunk of a specific element (in many cases
alkaline or alkaline-earth metals) to temperatures sufficiently
high to reach noticeable partial pressures of typically above
10−9 mbar. A long narrow pipe connects both chambers and
maintains a differential vacuum. The most common techniques
for transferring the atoms between the chambers are the Zeeman
slower [1–3], the double magneto-optical trap (MOT) [4,5],
the two-dimensional (2D) MOT [6], and different types of
conveyor belt techniques [7–9].

The transfer of atoms is always subject to atomic losses due
to atoms escaping from the beam. Some experiments resort to
funneling the atoms through quadrupolar or hexapolar mag-
netic waveguides [4,5], which however only works for atoms
that are paramagnetic in their ground state. In this paper, we
study the idea of guiding atoms through a hollow Bessel beam
(BB) over a distance of 23 cm, from a 2D-MOT created in a
preparation chamber, through a 20 mm long and 2 mm wide
differential vacuum tube, to a distant three-dimensional (3D)

MOT operated in a science chamber. If the frequency of the BB
is tuned to the blue of an atomic resonance, the repulsive force
exerted on the atoms by the dipolar optical potential will keep
the atoms away from the walls of the tube.

Hollow beams in free space, such as Laguerre–Gaussian
beams or BBs have been proposed for guiding or trapping
atoms [10–21]. In some cases, atoms were guided through
the hollow core of a light-carrying optical fiber [22–24]. For
instance, Song et al . [11] prepared a cloud of 100 µK cold
cesium atoms from a MOT directing inside the hollow beam
tuned between 0.25 and 1.5 GHz to the blue of the Cs cool-
ing transition. They observed acceleration and heating of the
atoms due to residual Rayleigh scattering. Xu et al . [13] demon-
strated a 20-fold increase of the transport efficiency of atomic
rubidium over a 10 cm long distance through the hollow beam
produced by a hollow-core optical fiber in good agreement with
Fokker–Planck simulations. Carrat et al . [21] meticulously
characterized the channeling of cold rubidium atoms prepared
in a 2D-MOT through a Laguerre–Gauss beam generated by
a spatial light modulator (SLM). Most experiments rely on
Laguerre–Gaussian laser beams, which are easy to produce
and stay hollow over very long distances. In this paper, we pro-
pose and analyze a scheme for guiding a precooled cloud of
strontium-88 atoms from a preparation chamber through a
narrow funnel into a science chamber via a hollow BB.
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BBs are characterized by extremely localized tube-like inten-
sity distribution walls, giving rise to very deep dipolar potentials
for atoms. On the other hand, they maintain their shape only
over limited distances.

The paper is organized in two main parts: first, we propose
a geometry of optical components for creating a hollow BB
using a single axicon and a lens. Numerically simulating the
evolution of the intensity distribution along the optical axis and
mapping it out experimentally, we find that the hollow BB stays
diffraction-free over a distance of more than 20 cm. Second,
we present an analytical approximation of the intensity distri-
bution, which will turn out to be useful for the Monte-Carlo
simulations of atomic trajectories presented in the second part
of the paper.

2. BESSEL BEAMS

Ideally, a BB is a non-diffracting monochromatic solution to
the scalar wave equation in cylindrical coordinates carrying
an infinite amount of energy [25,26]. In its simplest form, the
electric field of an arbitrary ν th-order BB with wavelengthλ can
be written as

E (ρ, φ, z)= A0 exp(ikzz)Jν(kρρ) exp(iνφ), (1)

where A0 is the electric field strength, and Jν is the νth-order
Bessel function of the first kind. In Eq. (1), kz and kρ are the
longitudinal and transverse wave numbers satisfying the disper-
sion relation k2

= k2
z + k2

ρ = (2π/λ)
2, such that kz = k cos θ

and kρ = k sin θ , with θ being the axicon angle associated to
the tilted plane of waves propagating along the surface of a
cone of half-angle θ in the angular spectrum decomposition.
Cylindrical coordinates (ρ, φ, z) have been adopted, and a time
harmonic factor exp(−iωt) has been omitted for brevity. For
our purposes, the Rayleigh range is an essential parameter to
be considered since the non-diffracting beam must propagate
through a 20 cm long differential vacuum tube to minimize
losses of atoms during their guidance to the science chamber.
The maximum propagation distance, up to which a BB can
overcome diffraction, is given by Zmax = 2π Rr̄ /λ, where R is
the aperture radius, and r̄ is the beam radius [25]. It should be
noticed that, in general, Zmax is much greater than the Rayleigh
range of a Gaussian beam with an equivalent beam waist radius
wg = r̄ .

A. Numerical Propagation of the Phase Front

In practice, various techniques have been developed for gener-
ating BBs, the simplest one being based on axicons [27–30]. In
this section, we numerically simulate the evolution of the phase
front of a Gaussian laser beam passing through an axicon and
then a focusing lens.

To propagate an optical phase front located at the position z0

of the optical axis, we conveniently start from a Gaussian laser
beam of waist radiuswg and electric field strength B0,

EGauss(x , y , z0)= B0 exp(−ρ2/w2
g ), (2)

where ρ =
√

x 2 + y 2 is the distance from the optical axis. The
electric field is normalized to the total power P of the light
beam, that is, I0,g = (cε0/2)|B0|

2
= 2P/(πw2

g ).

An axicon is a conical lens of base angle α made of material
with a refractive index nrf. It transforms an incident phase front
E in(ρ) according to

E axicon(ρ)= E in(ρ) exp(−ikρρ), (3)

where

kρ ≡ k sin[(nrf − 1) tan α]. (4)

The product−kρρ in Eq. (3) is then the phase shift suffered
by a paraxial beam ray passing through the axicon at a distanceρ
from the optical axis. In contrast, a thin lens with focal distance
f transforms a phase front according to

E lens(ρ)= E in(ρ) exp(−ikρ2/2 f ). (5)

The transformation of a beam due to propagation in free space
from position z0 to position z is obtained via [31,32]

Eprop(x , y , z)= H ? G =F−1
{H(z) ·F[E in(x , y , z0)], (6)

where H(z)= exp(ikz
√

1− (λkx )
2
− (λky )

2) and F denote
the 2D Fourier transform in x and y . The concatenation of
Eqs. (2) to (6) allows us to determine the radial distribution of
the electric field amplitude at any location z of the optical axis.

We now apply this formalism to the optical system shown
in Fig. 1. An axicon with base angle α = 0.5◦ and refractive
index nrf = 1.51 is placed at z=−440 mm on the optical
axis and a converging lens with focal distance f = 200 mm
at z=−200 mm. The origin of the system, z= 0, is chosen
to be located in the plane, where the hollow beam intensity is
maximum, that is, in the geometrical focal plane of the lens. At
the same time, we place the geometric center of the funnel in
this plane. A collimated Gaussian laser beam with waist radius
of wg = 0.5 mm and wavelength λ= 461 nm is injected and
propagated along the optical axis using the transfer functions
of Eqs. (3), (5), and (6). The simulation, exhibited in Fig. 2(a),
reveals the formation of a more than 20 cm long hollow beam
near the origin, which, when the light is tuned to the blue of an

Fig. 1. Scheme of the proposed atomic guiding: a push beam and
a Bessel beam are injected collinearly to the optical axis through a
vacuum viewport onto a 2D-MOT, where they create a guided atomic
beam. The laser beams and the atomic beam are funneled through a
20 mm long and 2 mm wide differential pumping tube before they
cross the capture region of the 3D-MOT.
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Fig. 2. Simulation of a BB produced from an incident Gaussian
beam with waist radius wg = 0.5 mm, wavelength λ= 461 nm, and
power P = 10 mW using one axicon (base angle α = 0.5◦, refraction
index nrf = 1.51) located at z=−440 mm and one lens (focal length
f = 200 mm) located at z=−200 mm. (a) Intensity distribution
I (x , y = 0, z) in the y = 0 plane. The colorbar codifies the intensity
in a decibel-milliwatt (dBm) scale. The positions of the 2D-MOT and
the 3D-MOT are indicated by red circles. The distances indicated in
(a) refer to the analytic modelling of Section 2.B. (b) Same as (a), but
in the presence of a differential pumping tube located at the position
z= 0. (c) Measurement of the evolution of a BB. (d) Radial cut of the
experimental intensity profile at z=−60 mm, and (e) shows an axial
cut of the normalized intensity profile I (x , y = 0, z=−60) for the
experimental data (blue-dotted) and the simulation (solid line).

atomic resonance, may serve to guide cold atoms. Figure 2(b)
shows the same simulation, but in the presence of a 20 cm long
and 2 mm wide funnel near the origin, through which the BB
is threaded. The funnel is introduced into the simulations by
simply removing all radial components of the intensity distri-
bution exceeding the funnel diameter over its whole length. A
comparison between both simulations reveals the presence of
diffraction caused by the funnel: even though the bulk part of
the BB clearly passed through the tube—we note a negligible
loss of total light power due to the passage through the funnel of
about 4% for the chosen geometry—, peripheral partial waves
blocked by the funnel lead to interference, filling the interior of
the tube with non-negligible light intensity.

In practice, imperfections of the axicon will spoil to some
extent the quality of the intensity profile of the BB. To obtain
a feeling of that, we mapped the radial intensity distribution at
various positions on the optical axis using a CCD camera. The
results, shown in Fig. 2(c), demonstrate a good agreement.

B. Higher-Order Bessel–Gauss Description

The dipolar optical force exerted by a BB is obtained as the
gradient of its intensity distribution. This presupposes that
the intensity distribution had been numerically calculated
on a sufficiently dense grid, and that the force be interpolated
between grid points. This makes the Monte-Carlo simulation,
to be presented in the following, heavy and slow. The calcula-
tion becomes simpler if an approximate but otherwise reliable
analytical solution can be found. In this section, we investigate
whether the analytical description of a paraxial higher-order
Bessel–Gauss (HOBG) beam can be used to model the intensity
distribution generated by an axicon with a sufficient level of
accuracy by comparing it with the numerical propagation of the
phase front through the optical system, described in Section 2.A.

We again consider the optical system of Fig. 1, which is
composed of an axicon followed by a focusing lens. Assuming a
cylindrical coordinate system centered at the geometrical focus
of the lens, a paraxial HOBG of order ν, transverse wavenumber
kρ , and electric field strength E0 is given by [33–35]

Ebs(ρ, φ, z)= E0
−i

2kzq(z)
exp

[
i
(

kz+ νφ +
kρ2

2z

)]

× exp

[
−1

4q(z)

(
k2
ρ

k2
+
ρ2

z2

)]
Jν

(
ikρρ

2kzq(z)

)
,

(7)

where we have defined q(z)≡ 1
k2w2

0
−

i
2kz , in which w0 is

the waist radius of the HOBG. Introducing the abbreviation
u(z, ρ)= ikρρ/[2kzq(z)], the intensity can be written as

Ibs(ρ, z)= cε0
2 |E (ρ, φ, z)|2

= I0

∣∣∣∣∣ 1

2kzq
exp

(
−k2

ρ

4k2q
+

k2u2q
k2
ρ

)
Jν(u)

∣∣∣∣∣
2

=
I0k2w4

0

4z2 + k2w4
0

exp

(
−k2

ρz2
− k2ρ2

2z2/w2
0 + k2w2

0/2

)
|Jν(u)|2,

(8)

with I0 = (cε0/2)|E0|
2. The intensity is normalized as

Pbs =

∫
R2

Ibs(ρ, 0)ρdρdφ

= I02π
∫
∞

0
ρ exp(−2ρ2/w2

0)Jν
(
kρρ

)2
dρ

=
πw2

0

2
I0 exp(−k2

ρw
2
0/4)Iν(

1
4 k2
ρw

2
0), (9)

where Iν is the modified Bessel function of the first kind. This
allows us to fix I0 for a given set of parameters Pbs,w0, ν, and kρ .

By using Gaussian beam optics through a lens, the beam waist
w0 of the HOBG can be related with the radius of the central
lobe rbb of the zeroth-order BB formed after the axicon and with
the distance d between the zeroth-order BB focal spot and the
lens [distances indicated in Fig. 2(a)]. The Bessel zone length
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formed after the axicon is zbb =wg / tan β = 112 mm [25],
with β = (nrf − 1) tan α. Thus, the distance d is calculated as
d = zax−l s − zbb/2= 184 mm, where zax−l s = 240 mm is
the axicon–lens distance. The central lobe radius rbb is given by
rbb = 2.405/kρ,bb = 39.6 µm [26], with kρ,bb = k sin β being
the transverse wavenumber of the zeroth-order BB [2.405 is
approximately the first non-null root of J0(.)]. Finally, the beam
waist of the HOBG is evaluated by [36]

w0 =

[
1

r 2
bb

(
1−

d
f

)2

+
1

f 2

(πrbb

λ

)2
]−1/2

, (10)

which yieldsw0 = 0.41 mm for our optical system.
Geometric optics predicts the radius of the ring pat-

tern and its width at z= 0 mm as ρmax = β f and 1ρ =

3.3(λ f )/(πwg ), respectively [37], whose values for our optical
system are ρmax = 0.890 mm and 1ρ = 0.194 mm. This is in
good agreement with the values found in the numerical method
of Section 2.A.

The transverse wavenumber kρ and the order ν of the HOBG
can be determined from ρmax and 1ρ values by using the fol-
lowing approach. The field must assume its maximum value at
ρ = ρmax, φ = 0, z= 0:

E (ρmax, 0, 0)= E0 exp (−(ρmax/w0))
2)Jν(kρρmax), (11)

hence, the maximum value of the function Jν(s ) must be at
s = kρρmax. Since the ring intensity decays at ρ =

ρmax +1ρ/2, the first root of Jν(.) must be equal to
kρ · (ρmax +1ρ/2). Therefore, ν and kρ are evaluated from
the following two expressions:

max[Jν(s )]ats = kρρmax,

first root of Jν(.)= kρ · (ρmax +1ρ/2), (12)

which can be solved numerically. We find for our optical system
ν = 30 and kρ = 2.68× 10−3k.

The intensity of the hollow beam calculated by the numerical
propagation of the phase front is shown in Fig. 3(a), whereas the
intensity of the HOBG beam, calculated from Eq. (8) with order
ν = 30, waist radiusw0 = 0.41 mm, and kρ = 2.68× 10−3k, is
presented in Fig. 3(b) in the x z plane. Apparently, the absolute
error is significantly larger for z� 0.

The optical dipole potential is calculated from the intensity
using Eq. (20) (see Section 3.C). The potential produced by the
numerical propagation method is represented in Figs. 3(c) and
3(d) by full black lines for different values of z. The potential
calculated via HOBG is represented in the same figures by
dashed red lines. The good agreement between the potentials
indicates that HOBG beams are able to describe hollow beams
generated by axicons. However, the level of precision is high
only for −100 mm≤ z≤ 50 mm. The deviation between the
HOBG description and the numerical propagation method
tends to increase with the distance from the focal plane. For the
purpose of this paper, the precision of the analytical HOBG
method is sufficient, so that for subsequent calculations of the
forces acting on the atoms we will resort to this method.

Fig. 3. (a) Intensity distribution of the hollow BB calculated
by numerical propagation of the phase front through the optical
system of Fig. 1. (b) Same as (a), but now calculated from Eq. (7)
using the HOBG method calculated with order ν = 30, waist radius
w0 = 0.41 mm, and transverse wavenumber kρ = 2.68× 10−3k.
(c) The red dash-dotted curve shows the optical potential for a detun-
ing of 1bs = 100 calculated from a cut through the intensity profile
(a) at position z= 0. The black solid curve illustrates Eq. (20), see
Section 3.C. (d) Same as (c), but at position z= 100 mm.

3. FORCES ACTING ON THE ATOMS

Let us now take a closer look at the layout of the proposed exper-
iment schematized in Fig. 1. The vacuum system consists of two
chambers: a preparation chamber and a science chamber. In the
preparation chamber strontium atoms are ejected from a heated
dispenser and subject to several laser beams (i) for trapping and
cooling them in a 2D-MOT, (ii) for pushing them via radiation
pressure along the symmetry axis toward the science chamber,
and (iii) for guiding them inside a blue-detuned hollow laser
beam.

To understand quantitatively how the atoms are transferred
between the 2D and 3D-MOT and, in particular, the role of a
hollow guiding beam, we perform simulations of atomic trajec-
tories under the influence of the forces exerted by the laser beams
and of gravity.

As can be seen in Fig. 3(c), the BB forms, near the origin and
for a total power of Pbs = 10 mW, a wall high enough to radially
confine atoms having a kinetic energy below kB 600 µK. In a
typical strontium MOT with its cloud at thermal equilibrium,
however, temperatures can be as hot as 10 mK, which means
that out of the Boltzmann energy distribution only a fraction of
atoms will be affected by this potential barrier. Furthermore, in a
MOT, the atoms are also subject to a restoring force, which adds
potential energy to the system. We account for this complicated
situation by a simple but realistic model, assuming that the
friction force exerted by the MOT is maintained at balance with
a fluctuating Langevin force caused by the random photonic
recoil imparted to the atoms upon light scattering. This balance
is what determines the temperature of the cloud, as long as it
interacts with the 2D-MOT cooling beams.

Let us now write down the forces.
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A. 2D-MOT (i)

The 2D-MOT generally captures atoms from a background gas
or a dispenser and cools them down to the Doppler limit of the
employed cooling transition. In a simple linearized approach,
the atomic motion [indicated by the coordinates (r, p)] in a
MOT can be described as a damped harmonic oscillation with a
spring constant κmot and a friction coefficientγmot,

Fmot(r, p)=−κmotr− γmotp. (13)

Typical values are κmot ≈ 4× 10−19 N/m and mγmot ≈

2× 10−22 Ns/m, where m is the mass of the 88Sr atoms. Being
subject only to these forces, the atoms would quickly cool down
to zero temperature. However, the temperature is limited by
spontaneous photon scattering processes, leading to a random
walk of the atoms in momentum space. For a cloud at thermal
equilibrium at temperature T, using the fluctuation-dissipation
theorem, we describe this diffusion by an additional stochastic
Langevin force Eξ(t), which is δ-correlated [38],

〈Eξ(t)〉 = 0,

〈Eξ(t)Eξ(t + τ)〉 =
m2

k2
2γ 2

mot DTδ(τ )= 8γmotmkB Tδ(τ ),

(14)

where DT = σ
2/γmot is the diffusion coefficient, and

σ = 2k
√

kB T/m is the width of the Maxwell–Boltzmann
distribution. λ= 2π/k = 2πc/ω= 461 nm is the wavelength
of strong cooling transition 1S0 −

1 P1 of strontium, whose
linewidth is0 = (2π)30.5 MHz.

In practice, we set the capture region of the 2D-MOT to
|ρ|, |z+ 30 mm|< 8 mm (left red circle in Fig. 1), i.e., the
forces Fmot and Eξ(t) are assumed to be present only within this
volume.

B. Push Beam and Gravity (ii)

Many 2D-MOT schemes make use of an additional ’push beam’
directed along the symmetry axis of the atomic cloud. Being
tuned to resonance, it exerts a radiation pressure force, which
can be described by [39]

Fpsh(p)= ~k êzγpsh(p), (15)

where

γpsh(p)=
6π

k2

s psh(p)

1+ s psh(p)
Isat

~ω
(16)

is the scattering rate, which depends on the atomic velocity
along the optical axis, pz/m, because of the Doppler shift sensed
by the accelerated atoms. The saturation parameter is given by

s psh(p)=
Ipsh/Isat

1+ (2k pz/m0)2
. (17)

Here, the push laser is assumed to be a plane wave with homo-
geneous intensity Ipsh limited to a radius of ρ < 1 mm, and its
goal is to accelerate the atoms toward the science chamber.

The radiation pressure force is always accompanied by heat-
ing of the atomic cloud due to the randomness of spontaneous
emission. The average heating rate can be estimated by

Rpsh(p)= ~ωrecγpsh(p), (18)

whereωrec = ~k2/2m is the recoil shift.
When the transfer is too slow (for example, if the push beam

intensity is too weak), the atoms deviate from the optical axis
due to gravity acting perpendicularly to the optical axis:

Fgrv =mg êx . (19)

C. Dipolar Potential and Radiation Pressure (iii)

If not otherwise stated, we assume a total power provided by the
laser from which the BB is generated of Pbs = 10 mW, and we
tune it by1bs = 100 to the blue of the cooling transition. The
dipolar potential sensed by the atoms is then

Ubs(r)=
~1bs

2
ln [1+ s bs(r)] , (20)

where we defined the local velocity-dependent saturation
parameter

s bs(r)=
Ibs(r)/Isat

1+ (21bs/0)
2 , (21)

with Isat = 2π2c~0/(3λ3) being the saturation intensity and∫
R3 Ibs(r)dxdy = Pbs. The inhomogeneity of this potential

gives rise to a conservative force,

Fbs(r)=−∇Ubs(r). (22)

On the other hand, when the laser is not tuned very far from
atomic resonance, the atoms will also sense a radiation pressure
force oriented in the propagation direction of the laser beam and
being proportional to the local scattering rate,

γbs(r)=
6π

k2

s bs(r)
1+ s bs(r)

Isat

~ω
. (23)

The radiation pressure force can be expressed by

Frp(r)= ~k êzγbs(r). (24)

Again, spontaneous emission from the BBs lead to heating
estimated by the rate

Rbs(r)=ωrecγbs(r). (25)

The intensity distribution of the BB, which is required to
determine the forces from Eqs. (22) and (24), is calculated
numerically, as explained in Section 2.A, or approximated
analytically from Eq. (8). In the Appendix A, we also derive an
analytical expression for the dipolar force.

D. Implementation of the Monte-Carlo Simulation

The Langevin equations for the motion of N (non-interacting)
atoms (labeled by an index n) subject to the light forces exerted
by the BB, the resonant push beam, and the MOT beams are
now

ṙn(t)= 1
m pn(t),

ṗn(t)= F(rn, vn)= Fmot(rn, pn)+ Fpsh(pn)

+ Fgrv + Fbs(rn)+ Frp(rn)+ Eξn(t). (26)
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We implement the simulation of the atomic motion by a
stochastic Runge–Kutta algorithm [40]. The simulations have
been carried out in two dimensions within the y = 0 plane,

rn(dt)= r(0)n +
dt
2m [p

(0)
n + p(1)n ],

pn(dt)= p(0)n +
dt
2 [F(r

(0)
n , p(0)n )+ F(r(1)n , v(1)n )]

+ Eζn

√
8γmotmkB Tdt, (27)

with

r(1)n = r(0)n +
1

m
p(0)n dt,

p(1)n = p(0)n + F(r(0)n , p(0)n )dt + Eζn

√
8γmotmkB Tdt .

The Cartesian components of ζ are δ-correlated random
numbers satisfying 〈ζn〉 = 0 and 〈ζn(t)ζm(t + τ 〉 = δmnδ(τ ).

Heating of the atomic cloud by spontaneous emission from
the push and the BB is incorporated by the following procedure.
After each time step of the simulation (dt = 10 µs), a direction
kpsh,n is randomly generated for every atom, accounting for the
randomness of the direction into which the light from the push
beam is scattered. The same procedure is repeated for the BB,
kbs ,n . The momentum change due to recoil is calculated for
every atom by

pn(t + dt)= pn(t)+ kpsh,n

√
2m Rpsh(pn)dt

+ kbs ,n

√
2m Rbs(rn)dt . (28)

We verified that this procedure generates the expected tempera-
ture increase due to heating.

Atoms hitting the walls of the funnel located at |ρ|> 1 mm
and |z|< 10 mm are removed from the simulation. Only atoms
passing through the capture region of the 3D-MOT, which is
set to |ρ|, |z− 190 mm|< 3 mm, contribute to the transfer
efficiency η≡ Ntrp/N, where Ntrp is the number of recaptured
atoms. Finally, the transfer process is aborted after 20 ms, time
after which atoms still flying around in the vacuum chamber are
assumed not to make it to the 3D-MOT region.

E. Results of the Simulation

In order to evaluate the impact of the BB on the transfer effi-
ciency from the 2D to the 3D-MOT, we run simulations of
Eq. (27) with N = 1000 atoms assumed to be at equilibrium in
the 2D-MOT at temperatures between T = 1 mK and 100 mK,
and we vary the intensity of the BB and the push beam. We
verified that the number of simulated atoms is sufficient to gen-
erate reproducible dependencies. In the simulations, we let the
2D-MOT equilibrate at this temperature before switching on
the push and BBs. We noticed that the simultaneous presence
of a strong BB can shield the central 2D-MOT region, reduce
its loading efficiency, and thus spoil the transfer efficiency of the
3D-MOT.

The results are shown in Fig. 4, which reproduce the number
of recaptured atoms as a function of various parameters. The
curves of Fig. 4(a) demonstrate clearly that higher BB intensities
help to guide the atoms and thus to enhance the transfer effi-
ciency. This is particularly important when the temperature of

Fig. 4. (a) Simulation of the loading efficiency as a function
of the potential depth U0,bs of the BB for various temperatures
between T = 1 mK and 100 mK and a fixed push beam intensity set to
Ipsh = 6.4 mW/cm2. (b) Same as (a), but now for various push beam
intensities between Ipsh = 0.064 mW/cm2 and 64 mW/cm2, while
the temperature is set to T = 10 mK.

the atomic cloud is high. With the chosen beam geometry and
for a laser detuning of 1bs = 100, total beam powers higher
than Pbes = 10 mW seem to be necessary. Above 100 mW beam
power, an increase of the transfer efficiency from below 20% to
more than 80% can be expected for an atomic cloud as hot as
T = 10 mK.

At T = 10 mK, the mean radial velocity of the atoms in the
2D-MOT is v̄ =

√
kB T/m = 1 m/s. This is by far too slow for

the atoms to reach the 3D-MOT, which is distant by 23 cm. By
the time atoms with this velocity arrive at the recapture region
via ballistic flight, they will have suffered a gravitational sag of
more than 20 cm! The benefit of pushed atomic transfer has
been confirmed by experimental observations [41]. A resonant
push beam with an intensity of Ipsh = 6.4 mW/cm2 is able to
accelerate the atoms to 30 m/s by the time they arrive at the
3D-MOT, despite the fact that the acceleration decreases as
soon as the Doppler shift exceeds the natural linewidth. This
reduces the gravitational sag to only a few 10 µm. The BB now
helps to defeat gravity, i.e., even at very weak push beam inten-
sities, atoms may slowly drift across the hollow BB toward the
3D-MOT. This explains the increase of the loading efficiency
observed in Fig. 4(b), even for very low push beam intensities of
below 0.6 mW/cm2. Higher push beam intensities decrease the
transfer time. However, at intensities exceeding the saturation
intensity, Isat = 43 mW/cm2, heating starts to spoil the transfer
efficiency, as verified in Fig. 4(b). We point out that the curve
of Fig. 4(b) corresponding to 64 mW/cm2 must be taken as an
upper bound, because other effects, such as the perturbation
of the 3D-MOT by resonant push light, is not captured by our
model.

The radiation pressures exerted by the BB and heating are
included in the simulation via Eqs. (24) and (25). At small
detunings, radiation pressure assists the transfer by accelerating
the atoms toward the science chamber. On the other hand, heat-
ing tends to increase the transverse velocity components and
cause atomic losses. However, being guided by the dark hollow
channel of the BB, the atoms spend only little time exposed to
the BB light, so that heating is limited.
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4. CONCLUSION AND PERSPECTIVES

We presented and evaluated numerically, as well as analytically,
a very simple scheme for enhancing the loading efficiency of a
3D-MOT by guiding a precooled atomic cloud from a prepara-
tion chamber through a differential pumping tube to a science
chamber via a hollow BB. We quantitatively verified the intu-
ition that higher temperatures of the precooled cloud require a
higher potential depth of the BB. At the example of 88Sr atoms
precooled to 10 mK, we found that it should be feasible to
increase the loading efficiency from 20% to 80% using, e.g., a
BB of total power Pbs = 500 mW tuned 500 above the atomic
transition at 461 nm. While the obtained results are specific
for the considered experimental scheme, the general procedure
of the simulations can easily be adapted to other schemes and
geometries.

A problem may occur when trying to thread the BB through a
narrow differential pumping tube: even when the beam clearly
passes through the tube, the external partial waves blocked
by the tube lead to interference, filling the interior of the tube
with non-negligible light intensity. In our case, this does not
represent a major problem, as it merely leads to a slight increase
in the radiation pressure accelerating the atoms towards the 3D-
MOT. Nevertheless, it should be noted that this interference
may be reduced by reducing the BB diameter, which, however,
requires axicons with smaller base angle, α< 0.5◦, or inverted
axicons, i.e., conical lenses with radially diminishing thickness.
Both are not readily available on the market. However, such
configurations can be realized with SLMs. An interesting exten-
sion of our waveguiding scheme could be the use of recently
discovered non-diffracting superpositions of BBs called “Frozen
Waves” [42–45]. These are stationary localized wave fields with
high transverse localization and a longitudinal intensity pattern,
which can assume any desired shape within long distances.

APPENDIX A: CALCULATION OF THE DIPOLAR
FORCE EXERTED BY A BESSEL–GAUSS BEAM

In order to obtain the dipolar force exerted by the Bessel–Gauss
beam, we need to take the gradient of the intensity distribution
in Eq. (8),

∇Ibs = êρ
∂ Ibs

∂ρ
+ êφ

1

ρ

∂ Ibs

∂φ
+ êz

∂ Ibs

∂z
' êρ

∂ Ibs

∂ρ
, (A1)

neglecting ∂z I . The radial gradient is, hence,
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}
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(A2)

where we used J ∗ν (u)= Jν(u∗) for holomorphic functions.
Using the recursion relation ∂ Jν (u)

∂u =
1
2 [Jν−1(u)− Jν+1(u)],

we find

Fig. 5. Calculation of the (a), (c) dipolar potential and (b), (d) force
exerted by a Bessel–Gauss beam of order ν = 30 at the Fourier
plane z= 0 for a beam power of Pbs = 10 mW, a waist radius of
w0 = 0.41 mm, and transverse wavenumber kρ = 2.68× 10−3k. The
blue solid line in (d) represents the numerical gradient of the potential
in (c). The pink-dotted line is a calculation of the force according to
Eq. (A4).
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Finally, the radial force exerted by the Bessel–Gauss beam is
according to Eq. (22),

Fρ = −
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.
(A4)

Figure 5 shows the forces calculated from Eq. (A3).
Obviously, the forces calculated in Figs. 5(b) and 5(d) are

large enough to compensate for gravity.
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